幻另一种三角函数(1 / 2)
=另一种三角函数=
之前提到过把任意三角形转化为n个直角三角形的方法,那么理论上,只要知道三角形的三条边的长度,那么就能够逆推出三个内角的角度。
-第一种最长边上三角形内高做另外两边垂线的三角函数-
配图1:
例如:一个三条边长度分别为15,14,13的三角形。
已知bc=15;ab=14;ac=13
ad垂直于bc垂足为点d
de垂直于ab垂足为点e
df垂直于ac垂足为点f
设bd长度为未知数a
设cd长度为未知数b
设de长度为未知数c
设df长度为未知数d
设ad长度为未知数e
设ae长度为未知数f
设be长度为未知数g
设af长度为未知数h
设cf长度为未知数i
长度加减法组:
f+g=14
h+i=13
a+b=15
勾股定律组:
a平方+e平方=14平方
b平方+e平方=13平方
c平方+g平方=a平方
i平方+d平方=b平方
c平方+f平方=e平方
d平方+h平方=e平方
相似三角形的对应边长度比相等定律组:
c/g=e/a
a/g=14/a
a/c=14/e
a/c/g=14/e/a
同样的,另外三种2和2比的就不展开了
b/d/i=13/e/b
当d*特定未知数x=c时
那么或许还存在一种特殊的比:
15/14/13=(g+i*x)/a/(b*x)???存在与否,作者没有去细究,只是猜测有这种可能。
然后就是根据同斜边勾股定律画圆原理,得知点e点d点f都在以ad为半径的圆的圆上
配图1:
-第二种最长边的中点做另外两边垂线的三角函数-
配图2:
如图:
de垂直于ab垂足为点e
df垂直于ac垂足为点f
设bd长度为未知数a
设cd长度为未知数b
设ad长度为未知数c
设de长度为未知数d
设df长度为未知数e
设ae长度为未知数f
设be长度为未知数g
设af长度为未知数h
设cf长度为未知数i